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Background 

Spins subsequent to aerodynamic stalls are a major cause of fatal loss of control accidents. While 
most aircraft have predictable behavior when stalled in coordinated flight, uncoordinated stalls 
with the “ball out of center” are not necessarily so forgiving, and the resultant loss of roll control 
can lead to immediate and severe roll excursions, unexpectedly putting the aircraft in an extreme 
bank angle from which recovery may be difficult or impossible. This is especially dangerous when 
it occurs at low altitude. For example, a pilot attempting to tighten an overshooting base-to-final 
turn by using bottom rudder to skid the aircraft, while already imposing maneuvering loads in a 
steep turn, leading to an accelerated stall and a drop of the already-low wing and out-of-control 
impact with the ground, is a classic and too-often repeated occurrence in the NTSB accident 
database.  While all low-altitude stalls are dangerous, recovery from a coordinated stall without an 
associated loss of roll control is far more likely.   

It is well understood in aviation that this stall-spin scenario can be avoided by maintaining 
coordinated flight. While aviators since the beginning of flight have been reminded that they must 
use the rudder to do this, especially during slow flight, the high prevalence of stall-spin accidents 
among pilots of all experience levels after nearly 100 years of flight suggests that “keeping the ball 
centered” can be a challenging task.   

Definition of Coordinated Flight 

“Coordinated flight” is defined as flight without sideslip, or “sideways motion” that is not aligned 
with the relative wind in the vertical axis.  Mathematically, it is a state in which the aircraft sideslip 
angle, or “directional angle of attack” (typically represented as β in flight dynamics equations) 
is zero.  In addition to the improved behavior in stalls, zero sideslip angle is desirable because it 
minimizes drag and is more comfortable for passengers.   

It is nontrivial to measure sideslip angle. In flight testing, it is typically measured using a vane-type 

transducer or a five-hole pressure probe, but such systems are not typically installed on small 

general aviation aircraft.  Instead, lateral acceleration at the aircraft’s center of gravity is used as a 

surrogate for sideslip angle.  When an aircraft is flown in a slip, aerodynamic forces on the 

aircraft’s side surfaces traveling into the relative wind will create an acceleration that is not aligned 

with the orthogonal aircraft axes.  Zero lateral acceleration indicates zero sideslip (assuming there 

are no other external forces not aligned with the aircraft axes, such as thrust asymmetry in a twin-

engine aircraft), and non-zero lateral acceleration is related to sideslip in a non-linear relationship 

that is based also on airspeed and aircraft weight.  Coordination is typically indicated using a “turn 
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coordinator” or “turn and slip indicator” instrument, which includes a curved bubble level-style 

inclinometer (in some pusher or twin-engine aircraft a yaw string is used instead).  These 

instruments provide a simple visual representation of coordinated flight, with a scale that relates 

to the lateral acceleration perceived by aircraft occupants. The inclinometer is typically marked 

with two vertical lines, sometimes called the “cage”, that mark the central position of the ball in 

coordinated flight and allow quantification of how “far out” from center the ball is. 

Motivation 

It is difficult for many pilots to consistently connect the intellectual knowledge that maintaining 

coordination is important to safe flight with the physical sensory and motor processes required to 

actually do so.  While many experienced pilots (especially those who fly taildraggers, gliders, or 

other aircraft with high adverse yaw moments) have developed a “seat of the pants” feel for 

required rudder inputs, for many pilots this intuitive sense never develops, and they must 

constantly remind themselves to check the coordination instrument and adjust their rudder pedal 

forces accordingly, a task that is often forgotten during high-workload stages of flight.  The fact 

that coordination can only be checked visually imposes another task on the visual sensory system, 

which is often already task-saturated.  This is especially true for VFR pilots who tend to be more 

accustomed to looking outside and have not developed a good instrument scan.   

Pilots maneuvering visually at low altitude (e.g. for a pattern and landing) must only monitor two 

instruments to maintain controlled flight – the airspeed indicator and the turn coordinator (perhaps 

this is why the conventional six-pack panel layout places those two instruments in a vertical 

column).  Eliminating the need to look at the turn coordinator would halve the number of 

instruments that the pilot must look at, and in an aircraft equipped with a glareshield-mounted or 

heads-up style AoA indicator or auditory/vibratory pre-stall warning system, the pilot would be 

able to keep his or her attention focused entirely outside.   

The focus of this work is to eliminate the need for a pilot to visually check a coordination 

instrument by adding a system that gives coordination feedback using tactile (touch) presentation. 

While a pilot’s visual sensory system is highly loaded during flight, the pilot’s somatosensory 

system is very much underutilized. The somatosensory system includes the senses of touch, 

balance, warmth, pain, and body and joint position and strain (proprioception).  The “sense of 

touch” itself includes a number of different sensations; our bodies are capable of sensing 

mechanical pressure, displacement of tissue, and vibration.   

It is intuitive to present coordination indications to the somatosensory system, as it is the system 

that should be sensing coordination by perceiving lateral acceleration or forces transmitted to the 

body through the seat (much as the body can sense the G loads in a highly loaded turn).     

Overview 

For the purposes of the EAA’ Founder’s Innovation Prize competition, the Solution is the “Buzz 

Ball” system described below. The Condition is uncoordinated flight and the Solution addresses 

this condition by providing a means of increasing a pilot’s ability to recognize and correct the 

condition, reducing the incidence of loss of control due to uncoordinated stalls and thus save lives. 
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The system consists of two physical parts.  The 
pilot-facing portion is very simple and consists of a 
thin seat cushion overlay with two small embedded 
vibrating actuators, positioned such that one is 
centered under each of the pilot’s buttocks.  A 
prototype of the seat overlay is shown in Figure 1.  
During coordinated flight, the system is idle, but when 
the ball moves out of center, the actuator on that side 
vibrates.  Instead of having to remember to look at a 
gauge and then “step on the ball”, the pilot will be 
notified of the uncoordinated flight condition and can 
simply “step on the buzzing ball” to correct it. 

The second part of the system is the control computer, 
shown in Figure 2.  This computer is a small package 
(about the size of two decks of playing cards) and must 
be mounted to a horizontal surface in the aircraft.  It 
contains three stacked circuit boards – an Arduino-
based computer board, a prototyping board with an 
inertial measurement unit (IMU), and a motor drive 
board.  A single cable connects the two modules, and 
power is supplied using a small external battery or 5V 
USB-style power supply from the aircraft power.   

The system was tested in my aircraft, a 1981 Wag-Aero Wag-a-Bond Traveler, which is an 
experimental amateur-built replica inspired by the Piper Vagabond.  Informed consent was 
obtained from all participants.   

Hardware 

The control computer is an HiLetgo-branded clone of the Arduino UNO R3 board (Figure 3).  It 
has a Microchip ATmega328P processor, which is an 8-bit AVR microcontroller with 32 KB of 
programmable flash memory, 2 KB of RAM, and multiple channels of analog and digital input 
and output (IO).  It is programmed by a laptop using a USB cable, and the Arduino developer 
community provides a free open-source development environment (Arudino IDE, from 
arudino.cc) that allows quick and easy development and deployment of code onto the hardware. 
The board has headers that allow “shield” boards to be stacked on top of it. 

Stacked on top of the control computer board is a 
prototyping shield with a form factor that matches the 
UNO R3.  The shield is attached using stackable pass-
through headers, so an additional board can be placed 
on top of it.  The only component on this board is the 
inertial measurement unit (IMU), an Adafruit 1120 
triple-axis accelerometer/magnetometer board based 
on the STMicroelectronics LSM303DLHC sensor.  
The board is arbitrarily mounted such that the +X axis 
is aft in the aircraft, +Y is right, and +Z is up.  The 
sensor chip communicates using the I²C serial 

 
Figure 1: Prototype seat cushion overlay 

 
Figure 2: Control computer 

 
Figure 3: Computer processor board 
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communication protocol, which is natively supported 
on the Arduino platform.  Assembly of this board 
required soldering the stackable headers and IMU 
module into place, plus the addition of four jumper 
wires.  The wires connect the GND, +5V, SCL, and 
SDA pins on the IMU module to the correspondingly 
labeled pins on the headers.  The completed board is 
shown in Figure 4. 

Stacked on top is the motor control board, a Sainsmart 
clone of the “Adafruit V1 motor shield”, shown in 
Figure 5.  This board uses the TI L293D quadruple 
half-H driver chipset to provide four channels of DC 
motor control (or 2 channels of servo or stepper motors, functionality we do not use), with voltages 

up to 10V and currents up to 600 mA continuous and 
1200 mA peak.  The motor control interface uses most 
of the digital IO pins on the Arduino (pins 3-12). 

The control unit is connected to the seat overlay unit 
with a four-conductor shielded cable.  Bootlace 
ferrules were crimped onto each conductor to secure 
into the screw terminals of the motor control board.  
The vibrator motor leads were soldered to the wires, 
then each connection was wrapped in electrical tape, 
then the pager motors themselves were wrapped in 
heat shrink (after removing the blue molded rubber 
shell), and the entire assembly was inserted into a 
¼” ID x  ½” OD x 2” L polypropylene standoff to 

protect the rotating eccentric weight from being touched.  The polypro standoffs were then inserted 
into slits in a piece of 1” tubular webbing.  The slits were spaced 6” apart, to approximately match 
the distance between the centers of the inventor’s buttocks.  The webbing was then secured to the 
existing aircraft seat using painter’s tape, as previously shown in Figure 1. 

A partial Bill of Materials can be found in Appendix A and wiring information in Appendix B. 

Software 

The software was developed in the Arduino C/C++-based integrated development environment 
and compiled using avr-g++.  The software is quite simple and the full source code is included as 
Appendix C or can be downloaded from our source repository.  Communication with the 
accelerometer is via the Adafruit_LSM303DLHC library, which is part of the Adafruit_Sensor 
library, both of which are available through the Arduino’s standard library manager.  Control of 
the motors is with an adaptation of public domain example code.   

On startup, the software initializes the IMU and briefly pulses the vibration motors to verify their 
functionality.  In the initial submission, the main loop sampled the accelerometer at 2 ms intervals 
and updated the system state at 50 ms intervals.  To reduce sensitivity to airframe vibrations from 
the engine, digital low-pass filtering is performed.  In the initial submission, this was achieved by 
averaging 25 samples over each 50 ms tick, then computing a rolling average over the preceding 
four ticks, so a total of 100 samples (200 ms) of lateral acceleration data are used.  In the current 

 
Figure 4: Inertial Measurement Unit Board 

 
Figure 5: Motor driver board 
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embodiment, the sampling occurs at 2.5 ms intervals and the system state is updated at 100 ms 
intervals, with the filtering is achieved using a first-order infinite impulse response (IIR) filter with 
a time constant of 250 ms. 

The filtered lateral acceleration is then converted to “ball position” using an empirically calibrated 
gain (described below).  If the ball position exceeds a predetermined threshold, the corresponding 
vibration motor for that direction is enabled.  A small amount of hysteresis is applied to reduce 
rapid cycling due to sensor noise when ball position is very close to the threshold.  For initial 
testing, the threshold was set such that the vibrations began when the ball was 3/8 of the way out 
of its cage, and stopped when it returned to within 0.370 of center. 

Diagnostic information is output over the serial port (so a laptop can be attached for debugging 
and calibration) and an indicator LED is flashed at regular intervals. 

The full source code can be downloaded from our source repository at the following URL: 

https://bitbucket.org/ethan_brodsky/buzzball 

Calibration 

The instrument was calibrated 
with the aircraft stationary on the 
ground, in a process taking about 
fifteen minutes.  With the aircraft 
parked on level ground such that 
the ball was centered, the lateral 
acceleration value is taken (using 
a laptop with a serial monitor), 
giving a zero value to 
compensate for the possibility 
that the cargo area deck is mounted unevenly relative to the airframe (though it may also include 
a small amount of error due to side-to-side inconsistencies in the landing gear or suspension).  
Then, one side of the aircraft was carefully lifted using a scissor jack under the axle stub, until the 
ball was one quarter of the way “out of its cage”.  The lateral acceleration reading was recorded at 
this point, and then process was repeated with the ball halfway out of its cage, three quarters of the 
way out of its cage, and fully out of its cage (inner edge of ball is exactly on white cage marking).  
This process was then repeated while lifting the other side of the aircraft.  To get the ball fully out 
of its cage required lifting the wheel approximately 7 inches, for an aircraft with gear spaced 
approximately 70 inches apart, so the ball fully out of the cage corresponds to a stationary static 
bank angle of 6° (I am not certain if all coordination instruments have the same scale).  Figure 6 
shows the aircraft jacked such that the ball is fully out to the left. Lateral acceleration at these nine 
ball positions (centered, four to the left, four to the right) was then entered into a spreadsheet to 
calculate the gain and offset for the “lateral acceleration to ball position” transfer function. The 
entire calibration process takes only about fifteen minutes, and aside from the zeroing (which could 
be simplified to just a button push), may not be necessary in subsequent aircraft. 

Installation 

The solution was designed to be extremely easy to use and can be quickly installed either 
temporarily or permanently, in any aircraft, experimental or normal-category. It must merely be 

 
Figure 6: Calibrating unit by jacking the aircraft to each ball position 
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affixed into place and requires no integration with any aircraft systems. A complete installation is 
shown in Figure 7. 

The seat cushion is merely that, a thin cushion that overlays the existing cushion.  It does not need 
to be attached to the 
aircraft in any way, 
though it may be held 
in place by Velcro, 
double-stick tape, or 
permanently installed 
inside the seat 
covering if desired.  

The control module 
must be attached to the 
aircraft in a fairly rigid 
manner, but it is small and light enough to fit almost anywhere.  The only constraint is that it must 
be rigidly mounted to a horizontal surface, aligned with the longitudinal axis of the aircraft, and 
relatively close to the aircraft’s center of rotation to avoid unwanted sensitivity to yaw rates. While 
the unit was hard-mounted to a solid structure in the test aircraft, large amounts of vibration from 
the engine suggest that mounting using an elastomeric isolation might be desirable – a small piece 
of foam in the mount and a few ounces of inertial mass bolted to the board was expected to be 
more than adequate. 

Most of the testing prior to the initial submissions was performed with the unit duct-taped to the 
floor of the cargo area immediately behind the pilot’s seat, but it could also be similarly installed 
on the floor, under the seat, or screwed to aircraft structure in an out-of-the-way location.  Pushing 
it up against a bulkhead or transverse crossmember has proven sufficient to ensure accurate axis 
alignment, but if that was not possible, it would not be difficult to add a calibration feature that 
would allow arbitrary positioning (the calibration process would merely involve raising and 
lowering the tail while on the ground to distinguish between the forward/aft and left/right axes).  

Since the initial submission, the mounting has been refined to reduce vibration.  The control 
module was installed onto a damping mount designed for reducing vibration when using a GoPro-
style camera on a small quadcopter UAV.  These cost under $20 from Amazon and consist of two 
carbon-fiber boards separated by a four rubber dampers.  The bottom board is screwed to a base 
which mounts in the aircraft, and the control module is attached to the top board with a single layer 
of 3M 300LSE double-sided adhesive foam tape.  To further reduce vibration, 2 oz of additional 
mass was added to the control module using eight 0.25 oz stick-on steel wheel weights.  In 
conjunction with the previously described software filter this was adequate such that spurious 
indications rarely occurred in the air, but this is an area in which further refinement would be 
useful.  It is important also to constrain the wires in a manner such that they do not transmit 
vibration to the unit. 

There is no limit on the length of cable between the control unit and the seat cushion.  All control 
signals are low voltage and low current and present very low risk of fire, even if the wire is cut or 
short-circuited.  The distance between the control module and the power supply is also practically 
unlimited, due to the small amount of power this device uses.   

  
Figure 7: Prototype was fully functional when installed in the aircraft using tape 
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All testing was done powering the unit with a small “USB power pack”, rated to 2200 mAh @ 5V 
DC. This battery is slightly larger than a pack of chewing gum, and any Seaplane Pilots Association 
member will recognize it as their “new member gift” last year.  The system could equally well be 
powered by a 5V USB charger plugged into a cigarette lighter on the panel or a 5V supply hard-
wired into the aircraft power.  Note that a fuse is essential if any non-current-limited power source 
is used. The entire unit pulls on the order of 100 mA, so 10+ hours of operation is easily achievable 
off a small battery, or can run indefinitely if plugged into the ship’s power. 

Cost 

This solution was intended to and has proved to be 
extremely affordable.  The actual cost to build the first 
functional prototype was under $50, and that included 
the purchase of extra boards and vibrator motors that 
came in multiple-unit packs.  All software was 
developed using free tools, though it does require a 
personal computer to program the module.  It may cost 
slightly more for third parties to replicate my 
prototype as I used a number of items I already had on 
hand (jumper wires, multiconductor cable, webbing, 
USB battery).  The only tools required are basic 
suppliers for soldering, crimping, and heat-shrinking 
of wire. Installation cost should be near zero, and it should be very easy to move between aircraft.   

Vibrating actuators 

The most significant challenge in this project has been 
finding a suitable vibrating actuator to provide tactile 
feedback through the buttocks, which have proven to 
be fairly insensitive to touch with the body’s weight 
compressing them.  

The initial prototype used vibrating motors intended 
for use pagers or cell-phones (Figure 8).  These motors 
were rated for 3500 RPM at 3.0VDC, pulling 70 mA 
continuous and 90 mA to start.  They were overdriven 
at 5V, presumably running at around 5500 RPM and 
pulling around 120 mA. While they worked great for 

testing in an office chair and in an on-road vehicle, they were barely adequate to be felt in the high-
vibration environment of a single-engine piston aircraft.  This is especially true after the motor is 
constrained into a mount that holds it in place while still allowing the eccentric weight to rotate 
while underneath a seated passenger – this seems to substantially reduce the perceived vibrations.  
One should also note that these motors are of quite low and variable quality, and the speeds output 
varied substantially among the five that came in the pack I purchased. As these motors only used 
1/5 the current-driving capacity that the motor controller board could handle, larger motors were 
tried. 

A second prototype concept used the vibrating actuator from a Sony PlayStation 3 controller.  A 
GameStop BB-6308 PS3-compatible controller was purchased at a garage sale (for $3) and 
disassembled to remove the vibrating motors.  These were much larger motors than the pager units, 

 
Figure 8: Pager vibration motor and assemblies 

 
Figure 9: PS3 vibration motor assemblies 
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measuring 1” diameter x 0.5” length, and had large eccentric weights.   They were of unknown 
specifications but were presumably designed to work on 3V based on the fact that the controller 
had 2xAA batteries.  When run at 5V, it pulled around 20 mA and spun substantially slower than 
the pager motor. To protect the eccentric rotating weight, the motor unit was slipped into a “acorn” 
plastic capsule of the type found in gumball or claw-style novelty vending machines, as shown in 
Figure 9. Unfortunately, vibrations from this unit were even less perceptible than those from the 
pager motor.  The author hypothesizes that touch receptors in the skin are much more sensitive to 
higher-frequency stimulus and that the more slowly rotating actuator is not suitable for this 
application. 

A third prototype was constructed using a Portescap 16N28-207E DC brushed motor.  It is rated 
for 10800 RPM at 12VDC and for loads of up to 240 mA, and was tested both at 12V (using an 
external power supply) and underdriven at 5V to retain the simplicity of a single power supply on 
the system.  An eccentric rotating weight was constructed by cutting off two units of a ground 
terminal bar intended for use in an electrical service panel and using a screw to clamp it onto the 
shaft, as shown in Figure 10.  Due to poor weather conditions and timing constraints, this assembly 
could not be tested in flight, but for ground-based testing, vibrations from this unit were extremely 
strong and easily perceptible at both 12V and 5V.  Two factors counting against this unit, however, 
are that it is extremely expensive, costing $39 each in small quantities (so two of them would 
nearly triple the overall bill of materials), and that it gets quite hot, exceeding 120°F (50°C) after 
a few minutes of continuous running, which is well below the 100°C rating, but too hot for comfort 
to be sat upon without some insulation.  The temperatures were much lower when unloaded, so it 
is likely due to the radial load the eccentric weight 
imposes on the shaft. This could be mitigated by 
setting software limits on continuous vibration – there 
is no reason the system needs to actuate continuously 
for several minutes while I am back-taxiing on the off-
camber grass strip my aircraft is based at – it could 
instead be disabled after 30 s of continuous vibration 
and just buzz periodically.  If these high-end motors 
are to be further investigated, a better choice might be 
the 207P, which is rated for 8000 rpm at 4.8V, or the 
210E, rated for 9690 rpm at 7.5 V (6460 rpm at 5V), instead of underdriving the 207E at 5 V to 
get 4800 rpm, provided that the assumption that higher vibration frequencies are desirable for 
perceptual purposes is correct.   

The fourth prototype was constructed using what should’ve been used all along, a vibrating 
actuator intended for a similar operator-alert application.  The General Motors 84017512 “Haptic 
Seat Motor” is one component of a “Lane Departure Warning System”, part of the “Driver Alert 
Package” available as an option in a number of vehicles, including the 2017 Chevrolet Silverado.  
List price for the motors is $63.40 each and they are widely available for ~$40.  These motors 
require 12V and pull approximately 100 mA and are extremely easy to feel.  Two of these vibrating 
indicators were fit into slots cut in a foam “knee cushion”, which served as an excellent seat 
overlay.  The optimal positioning was found to be 9” apart, positioned fore/aft such that they were 
under the pilot’s outer thighs.  They are slightly less perceptible there than they are when in the 
original configuration centered under each buttock, but the wider spacing makes it easier to 
unconsciously distinguish which indicator is vibrating.   

 
Figure 10: Escap Micromotor Vibration Unit 
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Further Study 

While we have so far only undertaken the most basic testing of this system, it offers the potential 
for very in-depth analysis of a pilot’s coordination performance.  The computer in the control 
module is capable of measuring and logging lateral acceleration without triggering the seat 
vibrators, so it would be possible to compare a pilot’s coordination with and without tactile 
feedback.  After each flight, a report could be generated showing what percentage of time the ball 
was within certain tolerances of center.  We hypothesize that the percentage of time spent in 
coordinated flight will be improved with the tactile feedback.  It would also be interesting to break 
down the report into sub-categories such as “coordination performance in straight and level flight”, 
“coordination performance while climbing” (with positive deck angle), and “while rolling left or 
right”. As the IMU also measures heading, coordination performance “while in a stable standard 
rate left turn”, “while in a steep turn”, etc… could also be evaluated.  The IMU used in this 
prototype was only a “six-axis” one, with a three-axis accelerometer and a three-axis compass, but 
for $5 more a nine-axis (these plus three-axis gyro) or ten-axis (those plus air pressure) could be 
used instead.  As the only pilot who has tested this system so far is the author, I intend to loan it to 
a number of pilots of varying experience levels flying a variety of airplanes and record and assess 
their performance over time, with the hope that it will improve the coordination performance in all 
cases.  Finally, it would be interesting to measure the performance of the system in VFR conditions 
with the lower half of the conventional turn coordinator instrument covered to remove visual 
feedback, forcing the pilot to rely only on tactile indication. 

Some thought was given to varying the power level of the vibrating indicators or pulsing them 
periodically for various degrees of out-of-coordinated flight, but it was found that the buttocks are 
not particularly sensitive to slight variations in tactile simulation, so an all-or-nothing indication 
was chosen.  It may be advantageous for the tactile stimulation to be more intense or to occur in a 
more sensitive area of the body, but the non-invasive simplicity of mounting the actuators in the 
seat led to this choice.  Other options have been discussed, including auditory feedback using 
stereo tones over the headset, “heads-up” visual indicators in the panel, vibrating stimulation on 
the hands or other more sensitive parts of the body, as well as the possibility that such feedback 
could be used for other indications like course guidance during cross-country or instrument flight. 

The original concept for this invention, conceived during a long flight accompanying a friend 
ferrying a Luscombe from Oregon to Wisconsin, was that the system would shock the pilot in a 
sensitive area to “punish” them for not maintaining coordinated flight, but for this initial proof of 
concept, we have opted for a less punitive means of training.  Options to use a third indicating 
element to “reward” the pilot with positive reinforcement for maintaining coordinated flight have 
also been discussed, but not implemented. 

Technical Notes 

This section includes a number of technical notes which did not fit elsewhere. 

It is important that IMU be mounted close to the aircraft’s center of gravity. All testing was 
performed with the unit mounted approximately two feet behind the test aircraft’s CG.  A mounting 
location far from the CG means that angular acceleration (changes in yaw rate) will create lateral 
acceleration at that measurement location, with the direction depending on their position relative 
to the yaw center.  This is unlikely to be a factor in most small general aviation aircraft, but one 
should note that it would be undesirable to put the sensing unit in the tail.  Mounting locations 
away from the aircraft centerline laterally might also cause small measurement errors. This is likely 
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to be negligible in small GA aircraft, but mounting the sensor at the end of the wing would also be 
undesirable. 

A design decision had to be made whether the unit should “normalize” its out-of-coordination 
quantification based on load factor.  The physical inclinometer in the turn coordinator (a segment 
of a circular arc) will exhibit reduced sensitivity to fixed lateral acceleration at higher load factors, 
as it is measuring the direction of the net acceleration vector projected onto the plane of the 
instrument panel.  To be representative of that, the software would have to normalize lateral 
acceleration based on the net acceleration vector (ignoring any longitudinal component).  We have 
opted not to do that, which means that the sensitivity of the instrument to out-of-coordinated 
conditions will be greater at high load factors.  If the vibrations start at “half a ball out” at 1 G, it 
will vibrate at “a quarter ball out” at 2 G.  Whether this is the right choice or not is open to question, 
but my intuitive take on this is that coordination becomes especially crucial in highly loaded flight, 
so perhaps increased sensitivity here is appropriate.  If someone feels otherwise, it would be easy 
to normalize by dividing ay by √(ay

2 + az
2) or using tan-1(ay/aZ) before further processing.  One 

should note that the normalization and coordination situation becomes complicated when the 
aircraft is inverted, and this device has not been tested in that situation. 

Conclusion 

The BuzzBall was tested for several hours of pattern work and local flying in the author’s aircraft 
and appears to satisfy its intended function, helping the pilot maintain awareness of aircraft 
coordination without having to look at an instrument.  Moving forward, a more powerful tactile 
feedback actuator should be used, as it is essential that the pilot be able to perceive the vibrations 
and respond intuitively even when not paying attention to them, and the current vibrator is too 
weak to be consistently felt when distracted.  The author intends to continue experimenting 
between now and Oshkosh.  I invite any and all EAA members to build their own and test out or 
enhance upon this concept.   
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Appendix A: Bill of Materials 

Initial Prototype (as submitted 2017-06-15) 

Qty Part Vendor Price 

1 HiLetgo Arduino UNO R3 Board ATmega328P CH340 (w/USB cable) Amazon $6.99 

1/3 Gikfun Prototype Shield DIY KIT for Arduino UNO R3 328P Ek1038 (pkg 3) Amazon $11.58 

1 SainSmart L293D Motor Drive Shield for Arduino  Amazon $5.50 

1 Adafruit 1120 Sensor Development Tools Triple-axis Board - LSM303 Amazon $17.49 

2/5 Bluesky 5x DC3V/3500RPM Pager/Cellphone MicroVibration Motor 4x8mm Amazon $7.89 

4 Jumper/hookup wires   

5 ft M27500/22ML4T23 multiconductor cable   

4 Crimp bootlace ferrule (yellow, suitable for 22 AWG wire)   

6 3M TMW adhesive-lined polyolefin heat shrink (.183 and .255) precut lengths    

1 ft 1” Tubular webbing    

4 in 0.252” ID x 0.500” OD polypropylene unthreaded spacer stock McMaster-Carr  

 

Current Embodiment (as of 2017-07-25) 

Qty Part Vendor Price 

1 HiLetgo Arduino UNO R3 Board ATmega328P CH340 (w/USB cable) Amazon $6.99 

1/3 Gikfun Prototype Shield DIY KIT for Arduino UNO R3 328P Ek1038 (pkg 3) Amazon $11.58 

1 SainSmart L293D Motor Drive Shield for Arduino  Amazon $5.50 

1 Adafruit 1120 Sensor Development Tools Triple-axis Board - LSM303 Amazon $17.49 

2 General Motors 84017512 Haptic Seat Motor GM dealer $82.70 

1 Fiskars 11x18x0.75” foam knee cushion Home Depot $5.97 

1 GoolRC Gimbal FPV Camera Mount with Anti Vibration Plate for DJI Amazon $16.99 

1 DROK Waterproof DC Buck Converter 8-22V to 1-15V 3A Amazon $9.96 

1/10 iMBA-CCTV-PGTM Security Camera Power Plug Pigtail Cable (pkg 10) Amazon $5.49 

1 RoadPro Fused Cigarette Lighter Plug with leads Amazon $3.88 

5 ft M27500/22ML4T23 multiconductor cable   

5 ft  Two-conductor power cable (18 AWG)   

 Crimp splices   

4 Crimp bootlace ferrule (yellow, suitable for 22 AWG wire)   

6 3M TMW adhesive-lined polyolefin heat shrink (.183 and .255) precut lengths    

8 0.25 oz stick-on steel wheel weights   
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Appendix B: Wiring 

Motor wiring: 
L+ White 
L- White/Blue 
R+ White/Orange 
R- White/Green 
 

Pinout on motor driver board: 
L M1 (+ outer, ‒ inner) 
R M2 (+ inner, ‒ outer) 
 

IMU to Arduino header on midboard: 

3V3  n/c   

Vin  5V  Red 

GND  Gnd  Black 

DRDY  n/c   

I1  n/c 

I2  n/c 

SDA  SDA  Blue 
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Appendix A: Full source code 

(as submitted, current version downloadable at https://bitbucket.org/ethan_brodsky/buzzball) 

// buzzball 

// June 2017 

// Ethan Brodsky 

 

// Copyright 2017 by Ethan Brodsky.  All rights reserved. 

 
// Certain rights are available to EAA members in accordance with the 2016-2017 Innovation Competition rules 

// see https://www.eaa.org/~/media/files/news/eaa%202016-2017%20fip%20rules%20final%20161013.pdf for details 

 

#include <Wire.h> 

#include <Adafruit_Sensor.h> 

#include <Adafruit_LSM303_U.h> 

 

#include "motor.h" 

  

// Assign unique IDs to each sensor  

Adafruit_LSM303_Accel_Unified accel = Adafruit_LSM303_Accel_Unified(54321); 

Adafruit_LSM303_Mag_Unified mag = Adafruit_LSM303_Mag_Unified(12345); 

 

void error_halt(void) 

  { 

   // shut off motors 

    motor(1, RELEASE, 0); 

    motor(2, RELEASE, 0); 

 

   // flash LED slowly 

    pinMode(LED_BUILTIN, OUTPUT);   

    for(;;) 

      { 

        digitalWrite(LED_BUILTIN, HIGH); 

        delay(1000);                       

        digitalWrite(LED_BUILTIN, LOW);   

        delay(1000);                        

      } 

  } 

  

void setup(void)  

  { 

    Serial.begin(9600); 

    Serial.println("Buzz Ball");  

    Serial.println(""); 

   

    if(!accel.begin()) 

      { 

        Serial.println("Error initializing accelerometer"); 

        error_halt(); 

      } 

   

    if(!mag.begin()) 

      { 

        Serial.println("Error initializing magnetometer"); 

        error_halt(); 

      } 
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    pinMode(LED_BUILTIN, OUTPUT);   

    digitalWrite(LED_BUILTIN, HIGH); 

  } 

 

#define SAMPLE_PERIOD 2       // ms 

#define TICK_PERIOD 50        // ms 

 

#define TICKS_PER_DISPLAY 5 

#define STARTUP_BUZZ_TICKS 40 

 

#define SAMPLES_PER_TICK (TICK_PERIOD / SAMPLE_PERIOD) 

 

#define ACCEL_ZERO 0.15 

#define ACCEL_GAIN -0.86 

 

#define BALL_THRESHOLD  0.375 

#define BALL_HYSTERESIS 0.050 

 

#define MOTOR_L 1 

#define MOTOR_R 2 

 

long sample = 0; 

long tick   = 0; 

 

bool buzz_L = 0; 

bool buzz_R = 0; 

 

float ay_prev1 = 0; 

float ay_prev2 = 0; 

float ay_prev3 = 0; 

float ay_prev4 = 0; 

 

float ay_buf[SAMPLES_PER_TICK]; 

 

long time_lasttick = 0; 

 

void loop(void) 

  { 

    long time_sample_start = micros(); 

     

    sensors_event_t eventAccel; 

    accel.getEvent(&eventAccel); 

 

    ay_buf[sample++ % SAMPLES_PER_TICK] = eventAccel.acceleration.y; 

 

    if (sample == SAMPLES_PER_TICK) 

      {  

        sample = 0; 

 

        long time_thistick = micros(); 

        long ticktime = time_thistick - time_lasttick; 

        time_lasttick = time_thistick;         

         

        float ay_raw = mean(ay_buf, SAMPLES_PER_TICK); 

                   

       // average previous five values (1/4 s average) 

        float a_y = (ay_raw + ay_prev1 + ay_prev2 + ay_prev3 + ay_prev4) / 5; 
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        ay_prev4 = ay_prev3; 

        ay_prev3 = ay_prev2; 

        ay_prev2 = ay_prev1; 

        ay_prev1 = ay_raw; 

 

        float ballpos = ACCEL_GAIN*(a_y - ACCEL_ZERO); 

 

        float threshold_L = BALL_THRESHOLD - (buzz_L ? BALL_HYSTERESIS : 0); 

        float threshold_R = BALL_THRESHOLD - (buzz_R ? BALL_HYSTERESIS : 0); 

     

        buzz_L = (ballpos < 0) && (abs(ballpos) > threshold_L); 

        buzz_R = (ballpos > 0) && (abs(ballpos) > threshold_R); 

 

        if ((tick < STARTUP_BUZZ_TICKS) || buzz_L) 

          motor(MOTOR_L, FORWARD, 255); 

        else   

          motor(MOTOR_L, FORWARD, 0); 

 

        if ((tick < STARTUP_BUZZ_TICKS) || buzz_R) 

          motor(MOTOR_R, FORWARD, 255); 

        else   

          motor(MOTOR_R, FORWARD, 0); 

 

       // diagnostic output on serial port 

        if ((tick % TICKS_PER_DISPLAY) == 0) 

          { 

            sensors_event_t eventMag;  

            mag.getEvent(&eventMag); 

         

             float heading=(atan2(eventMag.magnetic.y,eventMag.magnetic.x)*180)/PI;   

            if (heading < 0) 

              heading = 360 + heading; 

 

            float ticktime_ms = ticktime/1000.0; 

   

            Serial.print(tick);         

            Serial.print(" ("); 

            Serial.print(ticktime_ms); 

            Serial.print(")    H: "); 

            Serial.print(heading); 

 

            Serial.print("   rawA: "); 

            Serial.print(eventAccel.acceleration.x); 

            Serial.print(" "); 

            Serial.print(eventAccel.acceleration.y); 

            Serial.print(" "); 

            Serial.print(eventAccel.acceleration.z); 

            Serial.print(" (ball "); 

            Serial.print(ballpos); 

            Serial.print(") L"); 

            Serial.print(buzz_L); 

            Serial.print(" R"); 

            Serial.print(buzz_R); 

            Serial.println();       

          } 
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       // flash LED to verify code is still running 

        int flash_index = tick % 20; 

        if ((flash_index == 0) || (flash_index == 3)) 

          digitalWrite(LED_BUILTIN, HIGH); 

        else 

          digitalWrite(LED_BUILTIN, LOW);         

 

        tick++; 

      } 

 

    long time_sample_end = micros(); 

    long time_sample = time_sample_end - time_sample_start; 

 

    long delay_us = 0; 

    if (time_sample < 1000*SAMPLE_PERIOD) 

      delay_us = 1000*SAMPLE_PERIOD - time_sample; 

     

    delayMicroseconds(delay_us); 

  } 

 

float mean(float buf[], int n) 

  { 

    float sum = 0; 

 

    for (int ii = 0; ii < n; ii++) 

      sum += buf[ii]; 

 

    return sum / n; 

  } 

 

// end 
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// Simple Motor Shield sketch 

// ----------------------------------- 

// 

// By arduino.cc user "Krodal". 

// June 2012 

// Open Source / Public Domain 

// 

// Using Arduino 1.0.1 

// 

// A simple sketch for the motor shield, 

// without using the Adafruit library. 

// 

// The outputs can be used for DC-motors  

// (either full H-bridge or just On and Off), lights,  

// relays, solenoids, etc. 

// But stepper motors can not be used ! 

// Servo motors can be used with the default Servo library. 

// 

// A maximum of 4 DC motors can be used with full-bridge, 

// or a maximum of 8 normal outputs, or a combination. 

// Two servo motors can always be used, they use the +5V  

// of the Arduino board, so the voltage regulator could  

// get hot. 

// 

// Tested with an Ebay clone with the Arduino Uno. 

// 

// Parts of the code are from an old Adafruit Motor Shield 

// library, which was public domain at that time. 

// This code is also public domain 

// 

// This simplified program is using the normal  

// Arduino library functions as much as possible. 

// 

// The motors will make a whistling sound,  

// due to the analogWrite() PWM frequency. 

// The Adafruit library is specifically designed to avoid 

// this, so use the Adafruit library for a better result. 

// 

// 

// 

// Connector usage 

// --------------- 

// The order is different than what you would expect. 

// If the Arduino (Uno) board is held with the USB 

// connector to the left, the positive (A) side is  

// at the top (north), and the negative (B) side is  

// the bottom (south) for both headers. 

// 

//   Connector X1: 

//     M1 on outside = MOTOR1_A   (+) north 

//     M1 on inside  = MOTOR1_B   (-) 

//     middle        = GND 

//     M2 on inside  = MOTOR2_A   (+) 

//     M2 on outside = MOTOR2_B   (-) south 

// 

//   Connector X2: 

//     M3 on outside = MOTOR3_B   (-) south 
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//     M3 on inside  = MOTOR3_A   (+) 

//     middle        = GND 

//     M4 on inside  = MOTOR4_B   (-) 

//     M4 on outside = MOTOR4_A   (+) north 

// 

// 

//         ------------------------------- 

//         | -+s                         | 

//         | -+s                         | 

//    M1 A |                             | M4 A 

//    M1 B |                             | M4 B 

//    GND  |                             | GND 

//    M2 A |                             | M3 A 

//    M2 B |                             | M3 B 

//         |                       ..... | 

//         ------------------------------- 

//                + -  

// 

// 

// 

// Pin usage with the Motorshield 

// --------------------------------------- 

// Analog pins: not used at all 

//     A0 ... A5 are still available 

//     They all can also be used as digital pins. 

//     Also I2C (A4=SDA and A5=SCL) can be used. 

//     These pins have a breadboard area on the shield. 

// Digital pins: used: 3,4,5,6,7,8,9,10,11,12 

//     Pin 9 and 10 are only used for the servo motors. 

//     Already in use: 0 (RX) and 1 (TX). 

//     Unused: 2,13 

//     Pin 2 has an soldering hole on the board,  

//           easy to connect a wire. 

//     Pin 13 is also connected to the system led. 

// I2C is possible, but SPI is not possible since  

// those pins are used. 

// 

 

 

#include <Servo.h> 

 

void motor(int nMotor, int command, int speed); 

void motor_output (int output, int high_low, int speed); 

void shiftWrite(int output, int high_low); 

 

 

// Arduino pins for the shift register 

#define MOTORLATCH 12 

#define MOTORCLK 4 

#define MOTORENABLE 7 

#define MOTORDATA 8 

 

// 8-bit bus after the 74HC595 shift register  

// (not Arduino pins) 

// These are used to set the direction of the bridge driver. 

#define MOTOR1_A 2 

#define MOTOR1_B 3 
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#define MOTOR2_A 1 

#define MOTOR2_B 4 

#define MOTOR3_A 5 

#define MOTOR3_B 7 

#define MOTOR4_A 0 

#define MOTOR4_B 6 

 

// Arduino pins for the PWM signals. 

#define MOTOR1_PWM 11 

#define MOTOR2_PWM 3 

#define MOTOR3_PWM 6 

#define MOTOR4_PWM 5 

#define SERVO1_PWM 10 

#define SERVO2_PWM 9 

 

// Codes for the motor function. 

#define FORWARD 1 

#define BACKWARD 2 

#define BRAKE 3 

#define RELEASE 4 

 

 

// Declare classes for Servo connectors of the MotorShield. 

Servo servo_1; 

Servo servo_2; 

 

 

void motor_setup() 

{ 

  Serial.begin(9600); 

  Serial.println("Simple Motor Shield sketch"); 

 

  // Use the default "Servo" library of Arduino. 

  // Attach the pin number to the servo library. 

  // This might also set the servo in the middle position. 

  servo_1.attach(SERVO1_PWM); 

  servo_2.attach(SERVO2_PWM); 

} 

 

 

void motor_loop() 

{ 

/*   

  // Suppose there are two servo motors connected. 

  // Let them move 180 degrees. 

  servo_1.write(0);   

  delay(1000); 

  servo_1.write(180); 

  delay(2000); 

 

  servo_2.write(0); 

  delay(1000); 

  servo_2.write(180); 

  delay(2000); 

 

 

  // Suppose there is a relay, or light or solenoid 
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  // connected to M3_A and GND. 

  // Note that the 'speed' (the PWM, the intensity)  

  // is for both M3_A and M3_B. 

  // The output is a push-pull output (half bridge),  

  // so it can also be used to drive something low. 

  // The 'speed' (the PWM, the intensity) can be set  

  // to zero, that would make the output disabled  

  // and floating. 

  motor_output(MOTOR3_A, HIGH, 255); 

  delay(2000); 

  motor_output(MOTOR3_A, LOW, 255); 

*/ 

 

  // Suppose a DC motor is connected to M1_A(+) and M1_B(-) 

  // Let it run full speed forward and half speed backward. 

  // If 'BRAKE' or 'RELEASE' is used, the 'speed' parameter 

  // is ignored. 

  motor(1, FORWARD, 255); 

  delay(2000); 

  // Be friendly to the motor: stop it before reverse. 

  motor(1, RELEASE, 0); 

  delay(500); 

  motor(1, BACKWARD, 128); 

  delay(2000); 

  motor(1, RELEASE, 0); 

} 

 

 

// Initializing 

// ------------ 

// There is no initialization function. 

// 

// The shiftWrite() has an automatic initializing. 

// The PWM outputs are floating during startup,  

// that's okay for the Motor Shield, it stays off. 

// Using analogWrite() without pinMode() is valid. 

// 

 

 

// --------------------------------- 

// motor 

// 

// Select the motor (1-4), the command,  

// and the speed (0-255). 

// The commands are: FORWARD, BACKWARD, BRAKE, RELEASE. 

// 

void motor(int nMotor, int command, int speed) 

{ 

  int motorA, motorB; 

 

  if (nMotor >= 1 && nMotor <= 4) 

  {   

    switch (nMotor) 

    { 

    case 1: 

      motorA   = MOTOR1_A; 

      motorB   = MOTOR1_B; 
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      break; 

    case 2: 

      motorA   = MOTOR2_A; 

      motorB   = MOTOR2_B; 

      break; 

    case 3: 

      motorA   = MOTOR3_A; 

      motorB   = MOTOR3_B; 

      break; 

    case 4: 

      motorA   = MOTOR4_A; 

      motorB   = MOTOR4_B; 

      break; 

    default: 

      break; 

    } 

 

    switch (command) 

    { 

    case FORWARD: 

      motor_output (motorA, HIGH, speed); 

      motor_output (motorB, LOW, -1);     // -1: no PWM set 

      break; 

    case BACKWARD: 

      motor_output (motorA, LOW, speed); 

      motor_output (motorB, HIGH, -1);    // -1: no PWM set 

      break; 

    case BRAKE: 

      // The AdaFruit library didn't implement a brake. 

      // The L293D motor driver ic doesn't have a good 

      // brake anyway. 

      // It uses transistors inside, and not mosfets. 

      // Some use a software break, by using a short 

      // reverse voltage. 

      // This brake will try to brake, by enabling  

      // the output and by pulling both outputs to ground. 

      // But it isn't a good break. 

      motor_output (motorA, LOW, 255); // 255: fully on. 

      motor_output (motorB, LOW, -1);  // -1: no PWM set 

      break; 

    case RELEASE: 

      motor_output (motorA, LOW, 0);  // 0: output floating. 

      motor_output (motorB, LOW, -1); // -1: no PWM set 

      break; 

    default: 

      break; 

    } 

  } 

} 

 

 

// --------------------------------- 

// motor_output 

// 

// The function motor_ouput uses the motor driver to 

// drive normal outputs like lights, relays, solenoids,  

// DC motors (but not in reverse). 
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// 

// It is also used as an internal helper function  

// for the motor() function. 

// 

// The high_low variable should be set 'HIGH'  

// to drive lights, etc. 

// It can be set 'LOW', to switch it off,  

// but also a 'speed' of 0 will switch it off. 

// 

// The 'speed' sets the PWM for 0...255, and is for  

// both pins of the motor output. 

//   For example, if motor 3 side 'A' is used to for a 

//   dimmed light at 50% (speed is 128), also the  

//   motor 3 side 'B' output will be dimmed for 50%. 

// Set to 0 for completelty off (high impedance). 

// Set to 255 for fully on. 

// Special settings for the PWM speed: 

//    Set to -1 for not setting the PWM at all. 

// 

void motor_output (int output, int high_low, int speed) 

{ 

  int motorPWM; 

 

  switch (output) 

  { 

  case MOTOR1_A: 

  case MOTOR1_B: 

    motorPWM = MOTOR1_PWM; 

    break; 

  case MOTOR2_A: 

  case MOTOR2_B: 

    motorPWM = MOTOR2_PWM; 

    break; 

  case MOTOR3_A: 

  case MOTOR3_B: 

    motorPWM = MOTOR3_PWM; 

    break; 

  case MOTOR4_A: 

  case MOTOR4_B: 

    motorPWM = MOTOR4_PWM; 

    break; 

  default: 

    // Use speed as error flag, -3333 = invalid output. 

    speed = -3333; 

    break; 

  } 

 

  if (speed != -3333) 

  { 

    // Set the direction with the shift register  

    // on the MotorShield, even if the speed = -1. 

    // In that case the direction will be set, but 

    // not the PWM. 

    shiftWrite(output, high_low); 

 

    // set PWM only if it is valid 

    if (speed >= 0 && speed <= 255)     



23 
 

    { 

      analogWrite(motorPWM, speed); 

    } 

  } 

} 

 

 

// --------------------------------- 

// shiftWrite 

// 

// The parameters are just like digitalWrite(). 

// 

// The output is the pin 0...7 (the pin behind  

// the shift register). 

// The second parameter is HIGH or LOW. 

// 

// There is no initialization function. 

// Initialization is automatically done at the first 

// time it is used. 

// 

void shiftWrite(int output, int high_low) 

{ 

  static int latch_copy; 

  static int shift_register_initialized = false; 

 

  // Do the initialization on the fly,  

  // at the first time it is used. 

  if (!shift_register_initialized) 

  { 

    // Set pins for shift register to output 

    pinMode(MOTORLATCH, OUTPUT); 

    pinMode(MOTORENABLE, OUTPUT); 

    pinMode(MOTORDATA, OUTPUT); 

    pinMode(MOTORCLK, OUTPUT); 

 

    // Set pins for shift register to default value (low); 

    digitalWrite(MOTORDATA, LOW); 

    digitalWrite(MOTORLATCH, LOW); 

    digitalWrite(MOTORCLK, LOW); 

    // Enable the shift register, set Enable pin Low. 

    digitalWrite(MOTORENABLE, LOW); 

 

    // start with all outputs (of the shift register) low 

    latch_copy = 0; 

 

    shift_register_initialized = true; 

  } 

 

  // The defines HIGH and LOW are 1 and 0. 

  // So this is valid. 

  bitWrite(latch_copy, output, high_low); 

 

  // Use the default Arduino 'shiftOut()' function to 

  // shift the bits with the MOTORCLK as clock pulse. 

  // The 74HC595 shiftregister wants the MSB first. 

  // After that, generate a latch pulse with MOTORLATCH. 

  shiftOut(MOTORDATA, MOTORCLK, MSBFIRST, latch_copy); 
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  delayMicroseconds(5);    // For safety, not really needed. 

  digitalWrite(MOTORLATCH, HIGH); 

  delayMicroseconds(5);    // For safety, not really needed. 

  digitalWrite(MOTORLATCH, LOW); 

} 

 

// end 


